By Roger Godement

ISBN-10: 3540634142

ISBN-13: 9783540634140

Les deux premiers volumes sont consacrés aux fonctions dans R ou C, y compris los angeles théorie élémentaire des séries et intégrales de Fourier et une partie de celle des fonctions holomorphes. L'exposé non strictement linéaire, mix symptoms historiques et raisonnements rigoureux. Il montre l. a. diversité des voies d'accès aux principaux résultats afin de familiariser le lecteur avec les méthodes de raisonnement et idées fondamentales plutôt qu'avec les innovations de calcul, aspect de vue utile aussi aux personnes travaillant seules.
Les volumes three et four traitent principalement des fonctions analytiques (théorie de Cauchy, théorie analytique des nombres et fonctions modulaires), ainsi que du calcul différentiel sur les variétés, avec un exposé de l'intégrale de Lebesgue, en suivant d'assez près le célèbre cours donné longtemps par l'auteur à l'Université Paris 7.
On reconnaîtra dans ce nouvel ouvrage le sort inimitable de l'auteur, et pas seulement par son refus de l'écriture condensée en utilization dans ce nombreux manuels.

Show description

Read or Download Analyse Mathématique II: Calculus différentiel et intégral, séries de Fourier, fonctions holomorphes PDF

Similar functional analysis books

Download e-book for kindle: A Course in Functional Analysis by John B Conway

This publication is an introductory textual content in useful research. not like many sleek remedies, it starts with the actual and works its option to the extra basic. From the experiences: "This e-book is a wonderful textual content for a primary graduate direction in practical research. .. .Many attention-grabbing and significant purposes are incorporated.

Get Current Topics in Pure and Computational Complex Analysis PDF

The e-book comprises thirteen articles, a few of that are survey articles and others learn papers. Written by way of eminent mathematicians, those articles have been awarded on the foreign Workshop on complicated research and Its functions held at Walchand university of Engineering, Sangli. all of the contributing authors are actively engaged in examine fields on the topic of the subject of the ebook.

New PDF release: An Advanced Complex Analysis Problem Book: Topological

This can be an routines publication firstly graduate point, whose target is to demonstrate the various connections among practical research and the idea of features of 1 variable. A key position is performed via the notions of confident certain kernel and of reproducing kernel Hilbert house. a few evidence from practical research and topological vector areas are surveyed.

Extra resources for Analyse Mathématique II: Calculus différentiel et intégral, séries de Fourier, fonctions holomorphes

Sample text

Vii) :::} (i): Suppose C is a set . If UC admits a well ordering then, with respect to such an order, the map S H min S with domain C\ {0} is a choice function furC. 0 The Product Theorem has a claim to being intuitively obvious. It is easy to prove in Z F if the indexing set is finite or if revealing information is available about the co-ordinate sets ; if, for example, they are all equipped with a well ordering. With appropriate definitions and a little algebraic structure, it is easy to show that the number of elements in the product of a finite number of finite sets is got by multiplying the numbers of elements in each of them; it seems unreasonable to suggest that a larger product might be empty.

1 only if 151 < 00; 5 is said to be INFINITE otherwise. These terms are used also to describe families, products, unions and so on, where the meaning should be apparent from the context; so we might use the term finite product for a product in which the indexing set is finite, or finite union for the union of the members of a finite set . Suppose 5 is a set. 2 It is a consequence of the Axiom of Choice that every set admits a well ordering. But a set 5 with 151 :::; 00 can be characterized by being equinumerous with a counting numb er or with 00.

Even Larger Cardinals So far , 00 is the only cardinal we have encountered which is not a counting number. 19, the cardinals do not form a set. The theory of cardinalities thus has wider application than the primitive theory of counting, in that it enables us to distinguish certain classes of infinite sets from one another. 7 Suppose A is a set. For each subset B of A , we define the CHARACTERISTIC FUNCTION of B in A to be the function {(x , 1) I x E B} U {(x, 0) I x E A\B} and denote it by XB, the superset A being understood from the context .

Download PDF sample

Analyse Mathématique II: Calculus différentiel et intégral, séries de Fourier, fonctions holomorphes by Roger Godement


by David
4.3

Rated 4.30 of 5 – based on 40 votes